LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - APRIL 2014

MT 3102/3100 - MATHEMATICS FOR PHYSICS

Date: 05/04/2014
Dept. No. \square Max. : 100 Marks
Time : 09:00-12:00

Section A

Answer ALL questions:

1. Find the nth derivative of $y=\log (4 x+8)$.
2. Find the slope of the curve $r=e^{\theta}$ at $\theta=0$.
3. Write the expansion for $(1-x)^{\frac{-p}{q}}$.
4. Define symmetric matrix and give an example.
5. Find $\mathrm{L}\left(t^{2}+2 t\right)$,
6. Find $L^{-1}\left[\frac{1}{(s-a)^{2}}\right]$.
7. Write down the expansion for $\tan n \theta$.
8. Show that $\cos h 2 x=\cos h^{2} x+\sinh ^{2} x$.
9. What is the chance of that the leap year selected at random will contain 53 Sundays?
10. If the mean and variance of Binomial distribution is 4 and $4 / 3$. Find $P(X=0)$.

Section B

Answer any FIVE questions:

11. Find the $n^{\text {th }}$ differential coefficient of $\cos x \cos 2 x \cos 3 x$.
12. Find the angle of intersection of curves $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.
13. Find the sum to infinity of the series $\frac{5}{3.6}+\frac{5.7}{3.6 .9}+\ldots$
14. Find the characteristic roots of the matrix $\left(\begin{array}{ccc}2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3\end{array}\right)$.
15. Find $L^{-1}\left(\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right)$.
16. Express $\sin ^{7} \theta$ in a series of sines of multiplies of θ.
17. If $\cos (x+i y)=\cos \theta+i \sin \theta$, prove that $\cos 2 x+\cosh 2 y=2$.
18. Calculate the mean and standard deviation for the following table giving the age distribution of 542 members

Age in years	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
No of members	3	61	132	153	140	51	2

Section C

Answer any TWO questions:
19. a) If $y=\sin ^{-1} x$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$.
b) Prove that $\log \frac{n+1}{n-1}=\frac{2 n}{n^{2}+1}+\frac{1}{3}\left(\frac{2 n}{n^{2}+1}\right)^{3}+\frac{1}{5}\left(\frac{2 n}{n^{2}+1}\right)^{5}+\ldots \infty$.
20. a) Verify Cayley-Hamilton theorem for the matrix $A=\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$ and also find A^{-1}.
b) Separate $\tan ^{-1}(x+i y)$ into real and imaginary parts.
21.a) Find the Laplace transform of $L\left(t^{2} e^{-3 t}\right)$
b) Solve the equation $y^{\prime \prime}-3 y^{\prime}+2 y=e^{2 t}, y(0)=-3, y^{\prime}(0)=5$
22. a) Expand $\sin ^{3} \theta \cos ^{5} \theta$ in a series of sines of multiplies of θ.
b) A manufacturer of cotter pins knows that 5% of his product is defective. If he sells cotter pins in boxes of 100 and guarantees that not more than 10 pins will be defective, what is the approximate probability that a box will fail to meet the guaranteed quality?

